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Effect of interaction between chains on their size distribution: Strong magnetic field

L. Yu. Iskakova and A. Yu Zubarev*
Department of Mathematical Physics, Ural State University, Lenin Avenue, 51, 620083 Ekaterinburg, Russia

~Received 05 September 2001; revised manuscript received 8 July 2002; published 24 October 2002!

We consider ferrofluid consisting of identical spherical particles with permanent magnetic moment. Under
the assumption that linear chains can appear in the ferrofluid, we estimate the distribution function of a number
of the particles inside the chains. The main new moment of our consideration is that we estimate the influence
of interaction between the chains on the size distribution as well as on the mean number of the particles in the
chain. The analysis is done and simple expressions for an the size distribution function are obtained for
infinitely strong magnetic field in asymptotics of strong magnetic interaction between the particles inside one
chain.
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I. INTRODUCTION

Ferrofluids ~magnetic fluids, ferrocolloids! are colloidal
suspensions of single-domain ferroparticles with perman
magnetic moment in a carrier liquid. To prevent agglome
tion of the particles under van der Waals forces, they
coated by stabilizing surfactant layers. As a result, only m
netodipole and steric interactions between the particles
significant. Many experiments show that under the dipo
dipole interaction, the particles can agglomerate into lin
chainlike aggregates~see, for example,@1# and references
therein!. These chains can influence macroscopical, es
cially rheological, properties of the systems very stron
@1,2#.

Many models of the chainlike structures in ferroflui
@2–5# ignore effects of interaction between the chains as w
as between them and free particles. However it is known
these interactions can lead to the appearance of bulk drop
aggregates in magnetic fluids@6–9#. Theories of these bulk
transformations@10–13# treat them a as ‘‘gas-liquid’’ phas
transition in the ensemble of single particles. At the sa
time numerical experiments@14–18# demonstrate that for
mation of long chains can take place before and even ins
of the bulk condensation phenomena. The appearanc
long linear chains before bulk aggregates was observed
in magnetorheological fluids—suspensions of paramagn
particles with magnetic moment induced by the external fi
@19#. Therefore, the chains and interactions between th
play an important, often decisive, role in the formation
inner structure and phase state in magnetic fluids.

Theoretical analysis of the influence of chain-chain int
action on their size distribution and the ‘‘gas-liquid’’ pha
transition in ferrofluids without magnetic field has been do
in Refs. @20#. However, these models are based on a ma
ematical technique of theory of long polymer chains w
very high number of monomers. In real ferrofluids the cha
with a number of particles comparable with those
monomers in typical polymer macromolecules are har
expected.
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1063-651X/2002/66~4!/041405~7!/$20.00 66 0414
nt
-
e
-
re
-
r

e-
y

ll
at
ke

e

ad
of

lso
tic
d
m
f

-

e
-

s
f
y

One needs to note that mean diameter of ferroparticle
typical ferrofluids is about 10 nm. Estimates show that m
netic interaction between these small particles is too wea
provide any agglomeration phenomena. But real ferroflu
are always polydisperse and the biggest particles with di
eter a about 15–20 nm take place in these systems. Thes
particles can unite into linear and bulk aggregates. In m
typical ferrofluids concentration of the big particles is hig
enough for formation of various micro- and mesocluste
Recently special experiments on the creation of ferroflu
with high concentration of the big particles are carried o
successfully@21#. For these systems probability of the ass
ciate phenomena are especially high and, therefore, the s
of formation of various clusters is especially actual.

The aim of this work is theoretical analysis of the infl
ence of the effect of chain-chain interaction on equilibriu
size distribution of linear chains in ferrofluids, placed into
infinitely strong magnetic field. We assume that the cha
are not very long, therefore thermal fluctuations of th
shape are small and the interaction between far~along the
chain counter! particles is not significant. For maximal sim
plification of calculations, we consider monodisperse syst
consisting of big enough particles, capable of forming h
erogeneous structures. With respect to real polydisperse
tems this means that we ignore the influence of small p
ticles on the chain structure. Analysis of this influence can
a next step the in study of internal structures in ferrofluid

II. FREE ENERGY DENSITY OF THE FERROFLUID

Consider a system of identical spherical particles with h
drodynamical~with surface layers! radiusa and permanent
magnetic momentm suspended in a carrier liquid. Letgn be
a number of then-particle chains in a unit volume of th
magnetic liquid. Free energy of the particles in the unit v
ume can be presented in the following form:

F5kT(
n51

S gnln
gnv
e

1gnf n1gnGn@gk# D ,

~1!

e52.72 . . . .
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Here f n is dimensionless ‘‘own’’ free energy of the chain du
to interaction of the particles inside it and their interacti
with magnetic fieldH, v is volume of the particle, which is
considered here and below as an elementary phase vol
The magnitudeGn is the average dimensionless free ene
of the interaction of then-particle chain with the others, in
cluding free particles. From a mathematical point of viewGn
is a functional of the distribution functiongn .

The true functiongn provides a minimum ofF under the
obvious condition

(
n

ngn5c5
w

v
, ~2!

wherec is a total number of the particles in the unit volum
andw is their volume concentration. Our aim is to find th
functiongn . To do this we need, first of all, to determine th
dimensionless free energiesf n andGn .

III. THE ‘‘OWN’’ FREE ENERGY OF THE CHAIN

The dimensionless free energyf n can be presented in th
following form:

f n52 ln Zn ,

Zn5~2a!3(n21)E expF S a(
i 51

n

n i D
~3!

1g (
i 51

n21 S 3
~n i•r i !~n i 11•r i !

r i
5

2
~n i•n i 11!

r i
3 D G)

j 51

n

dn jd
r j

v
,

a5m0

mH

kT
, g5

m0

4p

m2

8a3kT
, r i5

Ri

2a
.

Heren i is a unit vector aligned along a magnetic moment
i th particle in the chain, andRi is a vector, connecting cen
ters of thei th and (i 11)th particles. The first term in the
square brackets of Eq.~4! is dimensionless energy of inte
action between the the particles and magnetic fieldH, and
the second one is dimensionless energy of magnetic inte
tion between the particles inside the chain. The interac
between only nearest neighbors is taken into account her
should be noted that this approximation is more precise
longer the chain is. The problem now is to calculate
many-particle integral~3!. We cannot do it a in general cas
and consider a situation when the magnetic field is infinit
strong. At the same time the appearance of the chain
expected only when the dimensionless parameterg of mag-
netic interaction of the particles is significantly more th
unity. The situation that we consider isa@g@1.

It is convenient to introduce the local coordinate syst
with axisOz aligned along the field. The exponent under t
integral in Eq.~3! has sharp maximum when all vectorsn i
and r i have onlyz components. Since the following stron
inequality a@g@1 is assumed, the first term in the exp
nent in Eq.~3! changes faster than the second one whenn i
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deviates from the axis. Therefore in the asymptoticsa→`
the statistical integral~3! can be rewritten as

Z5S ~2a!3

v D ~n21!E expS a(
i

n i D)
i

dn i

3F2pE expS g
1

r 3
~3 cos2u21!D r 2drd cosuG n21

~4!

5S ~2a!3

v D ~n21!S 4p
sinha

a D n

3F2pE expS g
8a3

r 3
~3 cos2u21!D r 2drd cosuG n21

,

wherer z5r cosu. Taking into account that the parameterg
is assumed to be more than unity, we can use the follow
asymptotic estimate for the integral overr:

E
r .1

expS gP~u!

r 3 D r 2dr5
1

3Er .1
expS gP~u!

y Ddy ~5!

5
1

3Es.0
expS gP~u!

11s Dds

'
1

3E0

`

exp„gP~u!~12s!…ds

5
1

3gP~u!
exp„gP~u!….

Substituting this estimate into Eq.~4!, taking into account
that for largeg the exponent in Eq.~5! has a sharp maximum
at u50 and varies with the angleu much faster than the
preexponent multiplier, we obtain approximately

Zn5S 4p
sinha

a D n

Jn21~g!vn21, ~6!

J~g!5
2

gE0

1

exp„g~3 cos2u21!…d cosu, g@1.

For analytical calculations the following asymptotic es
mate might be useful:

J'
1

3g2
exp~2g!. ~7!

The same asymptotic estimate has been obtained in Ref.@4#.
The accuracy of the estimate~7! is illustrated in Fig. 1.

Even forg close to unity the difference between numeric
calculation of the integral in Eq.~6! and estimate~7! is rela-
tively small.

Thus, when a@g@1 we come to the following
asymptotic relation:

f n52@an1~n21!ln~J!#. ~8!
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In conclusion of this part we would like to note that e
plicit magnitude of the elementary phase volume in Eqs.~1!
and ~3! does not influence the final physical result. O
choice of the this volume as volumev of particle makes all
calculations shorter.

IV. THE AVERAGE ENERGY OF INTERCHAIN
INTERACTION

To estimateGn we present it in the form

Gn5Gn
m1Gn

st , ~9!

where the upper indexesm and st stand for magnetic and
steric parts of the energy. For maximal simplification of t
mathematical side of the problem, we now treat the intera
ing chains as straight rodlike aggregates. In the other wo
we suppose that the characteristic size of the chain along
field is much more than those in the transversal directi
This idealization is strong, especially for long enough cha
however, it allows us to reach physically reasonable e
mates and qualitatively important results without very cu
bersome mathematics.

First, let us estimate the magnetic partGn
m of the inter-

chain interaction. Using the widely spread model of pair
teraction~with respect to magnetic fluids it was successfu
used in theory@13#!, we may write down

gnkTGn
m@gk#5gn(

n
Wnkgk, ~10!

whereWnk is the average magnetic energy of interaction
tween the paralleln- andk-particle chains. This energy is

Wnk52m2E F(
i 51

n

(
j 51

k S 3
j i j

2

r i j
5

2
1

r i j
3 D GdV. ~11!

Here r i j is the distance between thei th particle in the
n-particle chain and thej th particle in thek-particle chain,
j i j is the difference between thez coordinates of these par
ticles in a coordinate system with the axisOz aligned along
the magnetic field~Fig. 2!. Integration in Eq.~11! is over all

FIG. 1. Numerical calculation of the parameterJ in Eq. ~6!
~curve 1! and analytical estimate~7! ~curve 2!.
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positions of, say, thek-particle chain~the n-particle one is
assumed to be fixed! taking into account that the chains ca
not overlap.

Let the origin of the Cartesian coordinate system, sho
in Fig. 2, be in the center of the first particle in the fir
(n-particle! chain, andx,y,z be coordinates of the first par
ticle in the second (k-particle! chain. Using the approxima
tion of the chains as straight rods, we have

Wnk52m2(
i 51

n

(
j 51

k E F3
j i j

2

~r21j i j
2 !5/2

2
1

~r21j i j
2 !3/2GdV,

~12!

j i j 5z12a~ j 2 i !, r25x21y2.

De Gennes and Pincus have shown in Ref.@3# that the
integral of type~12! from the potential of the dipole-dipole
interaction depends on the shape of the volume of integ
tion. The correct choice of this shape, as an infinitely lo
cylinder with axis aligned along the magnetic field, has be
used in@13#. This form of the volume of integration provide
correct results since the magnetic field inside this ‘‘cavern
integration’’ coincides with the field outside this ‘‘cavern,
i.e., with the macroscopical magnetic field in the place wh
two interacting particles are situated.

We have to take into account in integral~12! that the
chains cannot interpenetrate. Because of a too complex
face of the chains, the exact form of the excluded volume
these chains is too cumbersome. To get reasonable estim
we present this excluded volume in the same form as for
spherocylinders with identical radiusa and the lengths of the
cylindrical part equaling 2a(n21) and 2a(k21), respec-
tively. For these two particles the excluded volume is
spherocylinder of radius 2a and the length of the cylindrica
part is 2a(n1k22). This approximation for the exclude
volume can be used when the mean distance between ax

FIG. 2. Cartesian coordinate system, used for calculation
energy~12!.
5-3
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the chains is significantly more than 2a, that is typical for
the ‘‘gas’’ and ‘‘liquid’’ states.

Using this approximation we can rewrite the integral
Eq. ~12! as

E F3
j i j

2

~r21j i j
2 !5/2

2
1

~r21j i j
2 !3/2GdV

52pF E
2a

`

rdrS E
2`

` S 3
j2

~r21j2!5/2
2

1

~r21j2!3/2D dj D
1S~n211 j 2 i !1S~k211 i 2 j !G , ~13!

where

S~x!5E
0

2a

rdrS EA(2a)22r212ax

` S 3
j2

~r21j2!5/2

2
1

~r21j2!3/2D dj D .

The integral overj is inner and this is to be calculate
first. The integral overr is outer and to be calculated secon
The order of integration is of principle importance here.

One can show that the first integral in square bracket
Eq. ~13! is equal to zero. The functionS(x) can be presented
as

S~x!5
1

2E0

1 A12y1x

~11x212xA12y!3/2
dy

5K~x,s2!2K~x,s1!, ~14!

where

K~x,s!5
1

4x3 F1

3
s3/222s1/21~x421!s21/2G ,

s1511x2, s25~11x!2.

After transformations~12!–~14! we have

Gn
m5(

k
Wnkgk ,

Wnk52kTg~2a!32p(
i 51

n

(
j 51

k

@S~n211 j 2 i !

1S~k211 i 2 j !#. ~15!

Now we turn to estimation of the steric partGn
st of the func-

tional G.
If volume concentrationw of the particles~therefore,

chains! is small, we can use the well-known method of viri
expansion and restrict ourselves by the approximation of
04140
.

of

e

second virial coefficient. The steric partFst of the free en-
ergy F in this approximation can be written as

Fst5
1

2
kT(

n
gnGn

st5
1

2
kT(

nk
gngkVnk

ex , ~16!

whereVnk
ex is excluded volume for then andk particle chains.

As is well known the approximation of second virial coef
cient for energy of a steric interaction is not sufficient
describe the condensation phase transition. The proble
how to generalize the equation~16! for the concentrated sys
tems. This is one of the unsolved problems in the theory
dense systems of nonspherical particles, which is espec
actual for statistical theory of liquid crystals. Simple, b
successful approximations forFst have been suggested b
Parsons in Ref.@22# and used in theories@23,24# of nemati-
clike systems. According the to idea of@22#, we may present
the steric free energy in the following form:

Fst5
1

2
kT(

n
gnGn

st5
1

2
kT(

nk
gngkVnk

exI ~w!, ~17!

whereI (w) is a function of the concentrationw only. Thus in
this model all information on the shape of these interact
particles is contained only in the excluded volumeVnk

ex . To
estimate theVnk

ex we model again the chains as spherocyl
ders of radius 2a and lengths of the cylindrical parts 2a(n
21) and 2a(k21), respectively. Using classical results
the Onsager theory@25#, we have

Vnk
ex56S n1k2

2

3D v. ~18!

SinceI (w) in the Parsons model does not depend on
shape of the spherocylinders~i.e., neither onn nor k), we
can determine this function using known results forFst in a
dense system of separate hard spheres. For instance, the
sical Carnagan-Starling approximation gives

Fst5
1

2
kTg1g1v8

12
3

4
w

~12w!2
. ~19!

At the same time for these spheresV11
ex58v. Comparing

Eqs.~17!, ~18! and ~19!, one can get

I ~w!5

12
3

4
w

~12w!2

and therefore

Gn
st56kT

12
3

4
w

~12w!2
v(

k
S n1k2

2

3Dgk . ~20!

Finally, combining Eqs.~1!, ~9!, ~10!, ~15!, ~17!, and~20!,
we obtain
5-4
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F5kT(
n

S gnln
gn

e
1gnf n1

1

2
gn(

k
gkFnkD ,

~21!

Fnk56F 12
3

4
w

~12w!2 S n1k2
2

3D2g(
i 51

n

(
j 51

k

„S~n211 j 2 i !

1S~k211 i 2 j !…G v.

V. THE SIZE DISTRIBUTION FUNCTION

Let us find now the distribution functiongn . Minimizing
F in Eq. ~21!, taking into account condition~2! and Eq.~8!,
we get

gn5
1

v
expS 2 f n2(

k
gkFnk2lnD

5
1

v
XnexpS 2«* 2(

k
gkFnkD , ~22!

X5exp~a1«* 2l!, «* 5 ln J~g!,

whereJ is the same as in Eqs.~6! and~7!. Parameterl here
is a Lagrange multiplier. Its physical meaning is chemi
potential of particles.

To determinel ~or, that is the same, parameterX), we are
to substitute Eq.~22! into Eq. ~2!. As a result we come to a
nonlinear equation of integral type forgn . This equation can
be solved only by using an iteration procedure. To organ
this procedure we take into account that, as simple consi
ations show, the mean energy of interaction between
ticles in different chains is weaker than the energykT2g of
interaction between the neighbor particles in one chain.
deed, the neighbor particles in one chain are situated
places close to positions of the maximum of absolute m
nitude of energy of their dipole-dipole interaction. Particl
from different chains cannot be situated in these occup
positions~otherwise they must be considered as belonging
one chain!. Then, the different chains are in a certain me
distance from each other. Thus, interaction between partic
belonging to different chains, really is weaker then the int
action between contacting particles in the chain. Theref
in the first approximation, we may neglect influence of t
interaction between chains on the distribution functiongn
and rewrite Eq.~22! as

g0n5X0
nexp~2«* !5X0

nJ~g!21, ~23!

where the index 0 means that we neglect any interact
between the chains~zero iteration for determinationgn).

Substituting Eq.~23! into Eq. ~2! after calculations, de-
scribed in detail in Refs.@2#, we get
04140
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X05
112wexp~«* !2A114wexp~«* !

2wexp~«* !

5
112wJ~g!2A114wJ~g!

2wJ~g!
. ~24!

The combination of Eqs.~23! and ~24! gives us the size
distribution function in the approximation of the noninterac
ing chains placed into an infinitely strong field.

Using now the functiong0n in the right side of Eq.~22!,
we come to the following approximate expression for t
distribution function with account of effects of intercha
interaction

g1n5
1

v
X1

nexpS 2«* 2(
k

g0kFnkD . ~25!

Using here Eqs.~23! and ~24! and substituting Eq.~25!
with Eq. ~2!, we come to the transcendent equation forX1.
Solving this numerically, we find distribution functiong1n
corresponding to the first step of the iteration procedure. T
procedure can be continued.

Some results of calculations of the functionsgon andg1n
are shown in Figs. 3 and 4. The physical meaning of the te
vgnn is volume concentration of then-particle chains in the
system. When parametersw and g are not very small, this
concentration, as a function ofn, demonstrates maximum
These maxima appear also in models@20# of the polymerlike
chains without field and in a simple model@2# where the
chains are treated as straight rodlike aggregates. As foll
from comparison of the plots, correspondingg0n and tog1n ,

FIG. 3. Volume concentrationvngn of the n-particle chains for
g53.5 andw50.05 ~a! and 0.1~b!. Solid lines:gn is calculated in
approximation~25!; dashed lines: in approximations~23! and ~25!
of the noninteracting chains.

FIG. 4. The same as in Fig. 3 forg54.5.
5-5
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the interaction between the chains leads to a more s
maximum of the volume concentration and decreases
number of the long chains.

The mean number of the particles in the chains~including
single particles! is

^n&5
w

v (
n51

`

gn

. ~26!

In the model of noninteracting chains@approximations
~23! and ~24! for gn] calculations give

^n&5wJ~g!
12X0

X0
. ~27!

When the dipole-dipole interaction between particles
strong (wJ@1) Eq.~27! can be transformed to the followin
form:

^n&'w1/2J1/2.

This estimate in logarithmic approximation coincides w
scaling approximation, discussed in Ref.@20#. In the model
of interacting chains@approximation~25!# the mean numbe
^n& can be calculated only numerically.

Calculations of^n& carried out in approximations~27!
~noninteracting chains! and Eqs.~25! and ~26! ~interacting
chains! are shown in Figs. 5 and 6 for two different magn
tudes ofg. The results demonstrate that the interaction
tween the chains decreases^n& as compared with those in th
model of the noninteracting chains. It appears becaus
decreasing of the total number of the particles united into
long chains.

The fact that the interaction between the chains decre
their mean length was noted also in@20# for the case of zero
magnetic field. Qualitatively this corresponds to observati
in numerical experiments@16# where chains take place onl
in dilute enough systems, whereas in a highly concentra
ensemble of ferroparticles separate linear clusters are ab

FIG. 5. The mean number^n& of the particles in the chains v
volume concentrationw for g53.5. Solid line corresponds to ap
proximation~25! and dashed line to Eqs.~23! and ~24!.
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The fact that the qualitatively similar results were obtained
different models for different limit situations~zero and infi-
nitely strong magnetic fields! shows general conformity to
natural laws with respect to influence of the interaction b
tween the chains on their characteristic size.

VI. CONCLUSION

Influence of chain-chain interaction on the size distrib
tion of these chains in ferrofluids placed into an infinite
strong magnetic field is studied. We show that for hi
enough total volume concentration of the particles and
ergy of their magnetic interaction, the function of distrib
tion for the chains over the number of the particles ins
them is a nonmonotonic function with maximum correspon
ing to certainn. The chain-chain interaction increases th
maximum and makes the pick more narrow as compa
with the results in the model of the noninteracting chai
Therefore, the number of free particles as well as the p
ticles united into long chains decreases due to the interac
between the chains. As a result the mean number of the
ticles in the chains decreases due to this interaction.

It should be noted that since the functionalF of free en-
ergy is nonlinear with respect to distribution functiongn ,
generally speaking, this can have several extremums@Eqs.
~2! and ~22! can have several solutions#. However, known
mathematical methods do not allow us to investigate ana
cally the nonlinear functionalF in the general case. At the
same time, when concentrationw of particles is low enough,
and the chain-chain interaction is weaker than interact
between neighbor particles in one chain@parameter«* in Eq.
~25! is significantly more than(kg0kFnk], the iteration pro-
cedure used is justified. For ferrofluids with a high density
particles, the system~2! and~22! can be studied only numeri
cally. This analysis is worth a separate work.
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FIG. 6. The same as in Fig. 5 forg54.5.
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